
4400 University Drive

Fairfax, Virginia 22030

44 00 Univer U

] - George Mason University

J COMPUTING EXACT DISTRIBUTION

OF CUSTOMERS IN MX/D/c QUEUES

BY

M.L. Chaudhry
J.E. Powell

C.M. Harris

DTIC

IELECTEII!

S D .

II
i'* q', .

I ____

<id . .. ', -:.be
. rsI ,asinW2L4"

"I

II.

NA

COMPUTING EXACT DISTRIBUTION

OF CUSTOMERS IN MX/D/c QUEUES

BY

COPY M.L. Chaudhry
INSPECT9D J.E. Powell

C.M. Harris

Aeession For

DTIC TAB
Unannounce

Justifioation

By S

Distribution/
Availability Codes

AvnI4 -nj,'or

"'"+'IELECTE
Dist' Jnca JU N2 7 98

i : £,,tr(rp* .+o 0, , ,,0

"Thj
6 "" "

, , t""
t .

S

TECHNICAL REPORT

Office of Naval Research

Contract No. N0014-86-K0029

0

COMPUTING EXACT DISTRIBUTION

OF CUSTOMERS IN MX/D/c QUEUES

by

M.L. Chaudhry

J.E. Powell
C.M. Harris

Report No. GMU/22474/102

June 21, 1988

Department of Operations Research and Applied Statistics

School of Information Technology and Engineering S
George Mason University

Fairfax, VA 22030

12
Copy No.--

This document has been approved for public sale and release;
its distribution is unlimited.

SECU RITY CLASSIFICATION Of THIS PAGE ("wt, Date gntoret*40Y' ~)t.REPORTF DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIFIENT'S CATALOG NUMBER

4. TITLE (andlSubtlo) 5. TYPE OF REPORT & PERIOD COVERED

Computing Exact Distribution of Customers in Technical Report

MX/D/c Queues 6. PERFORMING ORG. REPORT NUMBER
GMU/22474/102

7. AUTHOR(s) S. CONTRACT OR GRANT NUMIER(*)

M.L. Chaudhry, J.E. Powell and C.M. Harris N0014-86-K0029

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUM0ERS

Department of Operations Research and Task H-B
Applied Statistics Project 4118150

George Mason University, Fairfax, Va. 22030
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

June 22, 1988
Office of Naval Research

J3.unDE D2 PGS

800 North Quincy Street 22
-An" 1 fnpf-rr n Vo0 '991'7

SMONITOR'NG AGENCY NAME & (ADDRESS(i diflerent from Controlling Office) iS. SECURITY CLASS. (of this report)

Unclassified

I$a.SECLASSIFICATIO
N
/OOWNGRA

O
ING

SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

III. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on rever#@ ide If neceeea*, end identify by block number) nl
applied probability) numerical methods,
- i k-queueing- - rootfinding
r-EbmpUfatioftal probability (computational analysis
p -obability probability distributions. y) / 'Y
stochastic modeling

t

20. ABSTRACT (Continue on revere tdo If necaesauy and identify by block number) •

* , Bulk arrival queueing problems arise frequently in the modeling of
vehicle loading and telecommunication networks. However, the solution
of these problems has been historically hindered by the lack of efficient

* solution procedures.)i"this paper,"-we have-discussed an effective
numerical approach to solution, and' show4 that it works well for all
typical values of the model parameters, C and RHO..

DO -..o 7 1473 EDITION OF I NOV6 Is OSSOLETE
S'N 10 102- LF0 14- 6601 S*ctNiT CLASSIFICATION OFP THIS PAGE (11en Dote Ent~ed) 9

Computing Exact Distribution of Customers in MX/D/c Queues

by

M.L. Chaudhry, J.E. Powell

Department of Mathematics and Computer Science

Royal Military College of Canada, Kingston, Ontario, K7K 5LO, Canada

and C. Harris

Department of Operations Research and Applied Statistics

George Mason University, Fairfax, VA 22030, U.S.A.

Keywoords: Bulk Queues, Roots

Language

Fortran 77

Description

Just about the most common multi-server, batch-arrival queueing system encountered in practice is the

bulk Poisson input and constant service model, symbolized by MX/D/c. A prototypical application arises

in vehicle loading problems: batches arrive as a Poisson process to be loaded onto numerous vechicles at a

fixed rate. The analytic development of the model for the bulk-arrival, multiserver queue AMX/D/e ii given

in Chaudhry and Templeton (1983), Further computational aspects of the computation of the distribution

of customers have been discussed in Chaudhry et al. (1988). Smith (1987) considered only an approximate

solution to a special case of MXX/D/c, viz., the non-bulk MID/c queue. We present here an exact numerical

solution for the distribution of the number in the system for the queueing model MX/D/c.

Many applications of the model MX/D/c may involve high values of the model parameters, particularly

if the model is applied to large-scale systems in telecommunication and transportation. The purpose of this

paper, therefcre, is to complement the work reported by Chaudhry et al. (1988) by producing a refined

version of the program used for that paper. The program will run for high values of the bulk arrival

parameters (group sizes !5 100), high and low values of c and p (1 < c 5 100, .01 _ p S .9). Also, limited

testing has indicated that the program s ould work for more extreme values as well.

'V" kniI., 6 -

|W

2

The probability generating function (p.g.f.) for the bulk-arrival, multi-server system MX/D/c is in-

verted numerically by finding the roots of the characteristic equation (c.e.) of the p.g.f.. The roots are found

here using a special algorithm that combines the bisection and Muller's methods. The probabilities for the

number in the system are calculated by using recursive formulas given by equations (2),(3),(6),(7), and (8).

Then if needed (for example, when c is "large' or there is a "large' number of expected arrivals during

service), the formulas given by (4),and (5) can be used in an iterative way to increase the accuracy of the

probabilities.

Formuldas:

Using the notatior found for example in Chaudhry and Templeton (1983):

= arrival rate; b = duration of service time (constant); c = number of servers; 7,
aj = Prob(group size, X = j); a = mean batch she = Ejai; p = utilisation factor = Aib/c;

Irn(t) = Prob[total number of arrivals during (0, t) = n]; P, = ProbI n customers are in the system]

The underlying c.e. of the model is:

ze - exp{bA(A(z) - 1)) =0 (1)

which has exactly (c - 1) distinct roots within and one root on the unit circle, Izi = 1. Let the roots be

z,, ze-1,z. = 1. Chaudhry et al. (1988) show that the first c steady-state system size probabilities in

MX/D/c are given by
¢-1

c ziPO o= C(1- P) (Z (z-1) '(2) ,

P = b.Po, 1 < n < c (3)

with b, , coefficient of z n in i =(1 - z/z). Then, using the closed-form equations for irn (also given in

Chaudhry and Templeton, 1983) and the steady-state Chapman-Kolmogorov (C-K) equations written as

Po = ro(b) Pm, (4)S

C :+nl

P, = rn(b)Z P + E Pmrn-,+,(b), n=1,2,... (5)
m=O in=c+

IB
3

we find that

P. = Po exp(cp/a) - Z P., (6)~m=0

= P - i(b) o Pm (7)
ro(b)

and
P. - ir.(b) Z =o Pm - E,+- P"7r-+,(b)

= ro(b) n n=2,3,... (8)

Method for Calculating Pn

The probabilities are calculated by first finding the roots of (1) and then using the recursive relations

given by equations (2),(3),(6),(7), and (8). The calculations proceed until either the sum of the probabilities

in the vector {Pn} is very close to one or the maximum dimension of the probability vector {Pn) is reached.

The C-K equations (4) and (5) are applied to the probability vector as an iteration in order to increase

the accuracy of the probabilities whenever the recursive relations fail to achieve satisfactory results. The S

probability vector is then iterated until either one of two conditions is met. If we let {PQBn} = probability

vector before an iteration, and (Pn) = probability vector after an iteration, then the basic condition is:

Ose

DIFF = JP.i - PQBnl < DIFM
n=O

where size is the size of the probability vector {P.}, and DIFM is a tolerance to be given by the user as

an input parameter. The other condition is that the number of iterations cannot exceed the input parameter

MAXIT.

In most cases, the recursive method will produce very accurate results and the iterative method will

not be needed. However, the iterative method can still be used as a good check of the accuracy of the

probabilities. If the probability vector is iterated on and DIFF is very small (say < 10-1), then the iterative

method has converged and you have very accurate results. When PO is small, the recursive formula will

not yield very accurate results but will still produce a good starting vector for the iterative formula. When

PO < 10-30, the approximation P0 = 10-3° is used in order to get some rough starting vector.

The system MX/D/c has an interesting property that has been used to speqd up the calculations. If

WV

4

N is the greatest common divisor between the different group sizes and the number of servers, then only

every NtA probability will be non-zero. Thus the program has to only calculate every N1h probability.

Method for Finding the Roots

Since the basic root-finding method is discussed in Chaudhry et al. (1988), it is briefly given here.

The roots of (1) that are lying on the real axis inside the unit circle are found by using a combination

of the bisection and Muller's method for finding roots. Then the complex roots in the upper half plain of

the unit circle are found by using a special algorithm. In order to use this algorithm, equation (1) has to 0

be modified. Multiplying the R.H.S. of (1) by e2lin, writing z - re i * and taking logarithms, we can rewrite

(1) as the two equations

cInr = R((A(z) - 1) (9)

and

ce + 27rn = I(C(Afx) - 1)) (10)
I

where R(w) and I(w) denote the real and imaginary parts of w respectively. The algorithm is then for

j=1,2, ... , £, (where rn is the number of real roots):

(i) fix B at 0, = Oi-, + 5 where 0o = 0 and 6 is an increment initially defined as ir/(c + 1) and later L

(for j > 2) adjusted to min((O._1 - O9_,)/2.0, r/(c+ 1)).

(ii) solve (9) for re by using a combination of the bisection and Muller's methods.

(iii) evaluate the corresponding value of no, the solution of (10) for n using 0a and re.

(iv) fix 0 at Op = O -I + 26, and obtain ro, and no,.

Defining f(t) as the fractional part of t, the algorithm now repeats with 0, = 00 and 0 = O + 6 if

f(no.) < f(no,); otherwise there is a root between Oct and 09. Knowing there is a root between a

and Op, we then obtain ro, and no, for 0, = .5(0, + Op), and if f(no) > f(no.), set no. = n., and

= 9,; otherwise no, = no, and 00 = 0y. This process of bisecting the sector (0,,) continues until

0- , < 10 - 4. Then the value zj = rgexp(iO0) is a root of (9) and (10). However, because of the natural

logarithmic function, this approximation needs to be refined a bit more. Therefore, this root is used as

starting value for Muller's method using the c.e. which will yield a more accurate root.

%.%

0

If the angle being looked at is greater than r before all the roots in the upper half plane are found,.).
O

then the algorithm has missed a root. In these rare cases, the algorithm~is repeated using a smaller 5 and NN

a smaller increment for the bisection method. This increases the computation time but does overcome the

problem.

Structure

SUBROUTINE MXDC(NNZ,NA,PA,ABAR,C,RHO,MAXIT,DIFM,RTS,PSIZE)

Input Variables:

NNZ Integer Number of arriving groups

NA Integer array(GS) Group Sizes (indexed from i=1, ... NNZ in order of size) L

0
(eg. NA(1)= 10, NA(2) = 30, NNZ=2)

PA Real array(GS) Prob(group size of NA(i) arrives)

(eg. PA(1) = 0.4, PA(2) = 0.6)

ABAR Real Mean group size = d

C Integer Number of Servers = c ,

RHO Real Utilization factor = p

MAXIT Integer Maximum number of iterations

DIFM Real Maximum difference beween consecutive probability vectors

Output Variables:

MAXIT Integer Number of iterations performed

DIFM Real Difference between corresponding probability vectors

If DIFF = -1, then the recursive method was used.

RTS Complex array(RT) Roots of the c.e. N

P Real array(PS) Prob(number in the system = i)

SIZE Integer Size of the probability vector.

The sizes of the arrays are specified in PARAMETER statements in the subroutines and can easily be I

changed. The maximum sizes of the root vector, probability vector and number of group sizes are in RS,

."

PS, and GS respectively. The program has not been thoroughly tested for cases where RS is larger than 100.

GS can be increased and should not cause problems. The accuracy of the iterative method is dependent on

the size of PS (see the accuracy section). The value of 3000 for PS has proved to be large enough in most

cases tried.

This subroutine calls upon the following subroutines; GETRAD, MULLER, MULERS, and FN. GE-

TRAD is used by the root-finding section of the program. Given a particular angle and function, this routine

will find the radius that will give a zero of the function. MULLER is a version of Muller's method that finds

only real roots. It is used by GETRAD. MULERS is a version of Muller's method that finds complex roots

and is used by the second part of the root finding section of the program. FN computes values of c.e. an4

real and imaginary parts of the In of the c.e.. This is used by the root finding section of the program and is

discussed in Chaudhry et al. (1988).

Accuracy and Limitations

The accuracy of the root-finding algorithm is measured by comparing the value of the c.e. at the roots %

to the value of z' at the roots. Given a root z, if Izc -exp{bA(A(z) - 1)}I 4 IzCI, then Z is a good root. The

accuracy of the probabilities is determined by comparing means (L) and variances (Var) as calculated by

using: the roots, the first c probabilitico, and all the prohabilities. These formulas are discussed by Chaudhry

et al. (1988) and were used to produce the enclosed table 1. Another measure of accuracy is the value of

the output variable DIFM. This output variable is equal to the sum of the absolute values of the differences
0

between corresponding probabilities in consecutive probability vectors. Thus, the smaller the value of DIFM,

the greater the convergence of the iterative method to a steady-state solution. In most cases tried, after two

iterations, the means and the variances matched to four or more significant figures, and DIFM < iO - .

Two other conditions that are required for accurate probabilities are that the sum of the probabilities I.' .I

should be very close to one, and the size of the probability vector should not be equal to the maximum vector

size PRSIZE. These conditions are required for the iterative formula to be valid. When p is very high, the

size of the probability vector can sometimes exceed the memory capacity of the computer. In these cases,

the prematurely truncated vector will typically converge slowly to some steady-state solution, which may or

7

may not be close to the actual solution.

Time

The time required to find the roots ranged from only taking a few seconds to taking a few minutes

(on an IBM PC AT with 8087 numeric co-processor), depending on how many roots had to be found. The

time required to calculate the probabilities varied drastically depending on the queuing parameters and the

accuracy required. For reasonable accuracy (i.e., having the means and the variances match to within 4

significant figures and DIFM < 10-) the time required would be in the order of a few minutes. This time

would increase if greater accuracy was required, or if very high values for c and p were used.

Precision

Single precision should be adequate for machines using at least 64 bits to represent real numbers.

Otherwise double precision is required. In order to change the program to double precision, the explicit

REAL statement has to be changed to DOUBLE PRECISION, and the functions REAL, EXP, CEXP, ABS,

CABS, AIMAG, CONJG, SQRT, ACOS, COS, SIN, LOG, replaced by DREAL, DEXP, CDEXP, DABS,

CDABS, DIMAG, DCONJ, DSQRT, DACOS, DCOS, DSIN, DLOG. Also all the constants throughout the

program have to be changed to double precision (ie. 1.0 changes to 1.ODO).

Example

A sample run is given in table 1. All the input variables and somne f the output variables are shown. %

Acknowledgements .

This project was partially -upprted by CRAD rs,t.arch grant number FUttI{H and FE 1430-873u-770.

We wish to thank Natalie Risse.-co, Joe Micliel, and Gilles Bri;re for thcir contributions to the development ""''' "

of the method described hre. Part of the work on this project was done at the Department of Operations

Research and Applied Statistics (ORAS), George Mason University, where the first author (M.L. Chaudhry)

held a visiting professorship. He is grateful to the Department of ORAS where all facilities conducive to

%
research were provided. The work of Carl Harris on this paper was partially supported by ONR Grant -

N0o4-86-K-0029.

% S a.

.........+, . .::::1:

8

References

F~Chaudhry, M.L. and J.G.C. Templeton (1983) A first course in bulk queues. New York: Wiley.

Chaudhry, M.L., J.G.C. Templeton, J. Medhi (1988) Computational Analysis of Multiserver Bulk-Arrival

Queues with constant Service time Afl D/c. unpublished.

Smith, V.L. (1987) Algorithm AS 230 Distribution of Customers in MIET/rm Queues using Ilokstad's

Approximation. J. App. Stat., 394-401.

%,

0

Table 1 Example of Input/Output for MX/D/1O, with p- 0.5, a1 - 0.5, S

a2 0.25, a3 - 0.125, a4 - 0.125 6

Input Variables:

NNZ - 4 MAXIT - 5 ABAR - 1.875

NA(l) - 1 PA(1) - 0.5 C - 10
NA(2) - 2 PA(2) - 0.25 RHO - 0.5

NA(3) - 3 PA(3) - 0.125 DIFM - 1.OE-9
NA(4) - 4 PA(4) - 0.125

Output Variables: OF

MAXIT - 5 P(3) - 0.1079159
DIFM - 0.8702723E-06 P(4) - 0.1161159
RTS(1) - (1.0000000, 0.0000000) P(5) - 0.1068249 Ile

RTS(2) - (-0.7178427, 0.0000000) P(10) - 0.0380577

RTS(3) - (0.5857134, 0.5578024) P(20) - 0.0008178
RTS(4) - (0.1643529, 0.7369143) P(30) - 0.8036800E-05

RTS(5) - (-0.2728908, 0.6757375) P(40) - 0.7397169E-07 S
RTS(6) - (-0.5893607, 0.4034265) P(50) - 0.6576123E-09
RTS(7) - RTS(10) are conjugates P(60) - 0.5322294E-11

of RTS(3) - RTS(6) P(70) - 0.2077907E-13

P(0) - 0.0630749 P(72) - 0.1221037E-13
P(1) - 0.0860505 SIZE - 72

P(2) 0.1021267

Check on Output:

L (roots) - 5.2860534 Var(roots) - 13.6705954
L (first c prob.) = 5.2860540 Var(first c prob.) - 13.6705917

L (all the prob.) - 5.2860342 Var(all the prob.) - 13.6704229

Sum of the Probabilities = 0.9999989 .

Note: A user-friendly software package for the IBM PC family of computers
(or compatibles) has been developed by the authors. For more information e"

about this and other queuing packages please contact A&A publications,

395 Carrie Crescent, Kingston, Ontario, K7M-5X7, Canada.

% '

SUBROUTINE MXDC(NNZ,NA,PA,ABAR,C,RHO,MAXIT,DIFM,RTS, P.
6 SIZE)

C

C This program is designed to compute probabilities *

C of the number in the system for the bulk-arrival,*
C multiserver queue M~x/D/c.

C
INTEGER PS,RS,GS
PARAMETER(PS-3000 ,RS-510 ,GS-31)
INTEGER NRR,NCR,I,C,SIZE,NUMIT,MAXIT,IBEG,FLAC
INTEGER NNZ,J,N,M,KSIZE,NA(GS),IGCD,GCD
REAL Fl,F2,FF,X,RHO,ABAR,ANGSP,ANG,PQB(0:PS) ,F,P(O:PS)
REAL PA(GS),RADl,RAD2,ANGO,DIFF,DIFM,CDF,PI(O:PS),SUM3
REAL RADIUS,ANG1,ANG2,ANGLE,TOL,PI2,SUM,SUMTOL,RUNSUM
COMPLEX RTS(RS) ,COEF(RS) ,RT,CF,PC
PARAMETER(TOL-l .E- 14)

C
C INITIALIZE VARIABLES AND FIND THE REAL ROOTS
C 0

P12-4.0O*ACOS(O .0)
ANG-2 .O*ACOS(O.O)/CC+l)
X-0. 005

5 ANGLE-0.O
DIFF-l.0
NUMIT-O
NRR-O
RAD1--l.0-TOL
RAD2- . 0-TOL

10 CALL CETRAD(GS,RADIUS,ANGLE,RADI,RAD2,X.1,FL\G,F,PA,N-ANN-Z,C, HO
6 ,ABAR.RT,CF)

IF (FLAC.EQ.1) THEN

NRR-NRR-
RTS (NRR)-RADIUS
RAD1-RADIUSs2*X
COTO 10

END IF
NRR-NRR+l
IF(NRR.NE.1) RTS(NRR)-RTS(l)
RTS(l)-(1.O,0.0)

C Find Complex Roots
C
C .' '

XX*lO
ANCO-O .0
NCR-O

RADI-2*X % .P4 %I

I%
RA.D2-l-TOL
X-X*. 8
IF(NRR.EQ.C) GOTO 90
AN~l-ANG/2

C start of loop
20 Fl-O.O

DO 30 ANGLE-ANGl,PI2/2,ANG
CALL GETRAD(GS ,RADIUS,ANGLE,RADl,RAD2,X, 3, FLAG, FF,PA,NA,

6 NNZ,C,RHO,ABAR,RT,CF)
RAD1-RADIUS*. 8
CALL FN(GS,PA,NANNZ,C,RHO,ABAR,F2,ANGLERADIUS,4,RT,CF)
IF(Fl.GT.F2) GOTO 40
Fl-F2

30 CONTINUE
GOTO 60

40 ANG1-ANGLE-ANG0
ANG2-ANGLE

50 IF(ANG2-ANGl.GT.l.OE-4) THEN
ANGLE-(ANG-4ANG2)/2 .0
CALL GETRAD(GS,RADIUS,ANCLE,RADI,RAD2,X, 3,FLAG,FF,PA,NA,

6 NNZ,C,RHO,ABAR,RT,CF)
RADl-RADIUS*. 80
CALL FN(GS ,PA,NA,NNZ,C,RHO,ABAR, FF,ANGLE,RADIUS ,4,RT,CF)
IF(FF.LT.Fl) THEN

ANG 2-ANGLE
F2-FF

ELSE
ANG 1-ANGLE 41
Fl-FF

ENDIF
COTO 50

ENDIF
CALL MULERS(GS ,ANGLE,RADIUS ,FF,PA,N A,N-NZ,C,RHO,ABAR,RT,CF)
NCR-NGR+ 1
RTS (NCR+NR-R)-RT
IF((I;GR*24NRR) .LT.C) THEN

ANG SP-ANGLE -ANGO

ANGO-ANG LE
IF (ANGSP.LT.ANG) ANG-ANGSP
ANG l-ANGLE+ANG/2
GOTO 20

,

END IF
C end of loop

COTO 70
C
C Missed some roots -- try again with smaller step size
C
60 ANG-ANG/2.0

X-X/50 .0
GOTO 5

C FINISHED ROOT FINDING - COMPUTE CONJ.

70 Do 80 N-l,1NCR
RTS (NCR+NRR+N) -CONJG(RTs (NRR+N)) I)

80 CONTINUE

C
C CALCULATE THE PROBABILITIES P(n)
C
C Intialize Variables
C
90 SUMTOL-1.0 -1.E-12

SIZE-O
IBEG-0
DO 100 J-O,PS

PQB(J)-O .0
PI(J)-0.O
P(J)-O.O

100 CONTINUE
DO 110 I-1,C

COEF(I)-0.0
110 CONTINUE
C
C Find the Greatest Coimmon Divisor
C

GCD-0
DO 130 N-NA(l),l,-1

DO 120 J-1,NNZ
IF((NA(J)/N)*N.NE.NA(J)) COTO 130

120 CONTINUE
IF(GCD.EQ.0) CCD-N
IF(CC/N)*N.EQ.C) GOTO 140

130 CONTINUE
140 IGCD-N
C
C Calculate PI's
C

KSIZE-PS
PT (O)-EXP(-C*RHO/ABAR)
SUM-PI (0)

C

DO 170 N-GCD,(PS.-1),GCD
PI(N)-O.0
DO 150 I-1,NNZ

IF((N-NA(I)).LT.O) GOTO 160
PI(N)-PI(N)+NA(I)*PA(I)*PI(N.NA(I))

-150 CONTINUE
160 PI(N)-PI(N)*C*RAO/(ABAR*N)

SUM-SUM+PI (N)
IF(SUM.CE. SUMTOL) THEN

SUM-SUM-PT (N)
KSIZE-N
COTO 180

END IF
170 CONTINUE

KSIZE-N-GCD
180 D0 190 N-KSIZE,pS

PI(N)-O.0
190 CONTINUE

C
C CALCULATE P(O)
C

!11 lp."

PC-1. 0.
DO 230 1- 2,C

PC - PC*RTS(I)/(RTS(I)-1.O)
230 CONTINUE

P(O) -REAL(PC)*C*(1.O-RHO)
IF(P(O).LE.1.OE-30) THEN

P(O)-1 .OE-30
ENDI F

C
C CALCULATE THE COEFICIENTS FOR THE FIRST C PROBABILITIES
C

COEF(l) - *1.EO/RTS(l)
DO 250 I - 2, C

DO 240 J - 2, I
COEF(I-J+2) - COEF(I-J+2) - COEF(I-J+1)/RTS(I)LA

240 CONTINUE
COEF(l) - COEF(l) - l.EO/RTS(I)

250 CONTINUE

C CALCULATE P~i) ---> P(C-1)

SUM-P (0)
IF (C.EQ.1) COTO 270
DO 260 I - IGCD, C-i,IGCD

P(I)-REAL(COEF(I))*P(O)
IF(P(I) .LT.O.0.OR.P(I) .GT.1.O) THEN

SIZE-I
P (I)-0.0
GOTO 300

END IF
SUM-SUM+P(I)
IF(SUM.GE. SUMTOL)THEN

SIZE-I
COTO 300 0

ENDIF
260 CONTINUE
C
C CALCULATE P(C),P(C 1),P(C+IGCD) --- > P(SIZE)

270 P(C)-P(0)*EXP(C*RHO/ABAR)-SUM
IF(P(C).LT.0) P(C)=0.O

) SUM-SUM+P(C)

IF(ICCD.EQ.1) THEN
IBEG-2

ELSt~
IBEC-ICCD

ENDIF
CDF-SUM+P(C+l)
DO 290 N-IBEG,(PS-C),ICCD

IF(N-ICCD.LT.KSIZE) THEN
CDI -C.-I GCD
r ELSE

I-N+C- KSIZE

END IF

SUM3-0 .0

DO 280 M-I,C+N-1,IGCD
SUM3-SUM3+P(M)*PI (N-M+C)

280 CONTINUE
P(C+N)-(P(N) -PI(N)*SUM-SUM3)/PI(o)
IF(P(C+N) .LT.0.0)P(G+N)-O.O
CDF-CDF+P(C+N)
IF(CDF.GE. SUMTOL)THEN

SIZE-C+N
0010 300

ENDIF
290 CONTINUE

SIZE-PS
C
C PREPARE FOR ITERATION LOOP
C
300 SUM-O.0

DO 310 N-0,SIZE
PQB(N)-P(N)
SUM-SUM+PQB (N)

310 CONTINUE
IF(SUH.LT.0.9999) THEN

DO 320 N-O,SIZE9
PQB(N)-PQB(N)/SUM
P(N)-PQB(N)

320 CONTINUE
ENDIF

C
C START OF ITERATION LOOP
C

DO 390 NUMIT-1, HAXIT
SUM-0 .0
DO 330 I-0,0-I

SUM-SUM+PQB (I)
330 CONTINUE

P(O)-PI (0)*(SUM+PQB(C))
RUNSUM-P(O)
DO 360 N=IGCD,PS,IGCD

SUM3-0.0

DO 340 J-MINO(KSIZE,N),O,-la
IF((N-J+C).GT.(SIZE-1)) GOTO 350
SUt43-SUM3+PQB(N-J+C)*PI (J)

240 CONTINUE
350 P(N)-PI(N)*SUM+SUM3

IF((RUNSUM+P(N)) .GT.SUMTOL) COTO 370
RUNSUM-RUNSUM+P (N)
IF(P(N).LT.1.E-14.AND.RUNSUM.GT.O.9999) GOTO 370

360 CONTINUE
370 SIZE-N-IGCD+l

DIFF-0.0
DO 380 N-O,SIZE-1,IGCD

DIFF-ABS(P(N) -PQB(N))+DIFF
PQB (N) -P (N)

380 CONTINUE
IF(DIFF.LE.DIFM) COTO 400

390 CONTINUE

NUMIT-NUMIT -1

C
C RETURN TO MAIN PROGRAM

C
400 DIFM-DIFF

MAXIT-NUMIT
RETURN
END

C
C - - - - - - - - - - - - - - - - - - -

C

SUBROUTINE GETRAD(GS,RADIUS,ANGLE,RADI,RAD2,X,N,FLAG,FF,PA,NA,
6 NNZ,C,RHO,ABAR,RT,CF)

C

INTEGER GS

INTEGER FLAG,N,NA(GS),NNZ,C
REAL ANGLERADIUS,RAD1,RAD2,X,FF,F1,RHO,ABAR,PA(GS)
COMPLEX RT,CF

C0
FLAG-i
RADIUS-RAD1
CALL FN(GS,PA,NA,NNZ,C,RHO,ABAR,F1,ANCLE,RADIUS ,N,RT,CF)

10 RADIUS-RADIUS+X

IF(RADIUS.GT.RAD2) GOTO 20

CALL FN(GS,PA,NA,NNZ,C,RHO,A.BAR,FF,ANGLE,RADIUS,N',RT,CF)
IF(FF*Fl.LT.O.O) THEN

RADIUS-RADIUS -X/2 .0

GOTO 30

ENDIF
FI-FF

GOTO 10
20 FLAG-O

RADIUS-1.0-1.OE-10
3C CALL MULLER(GS ,ANGLERADIUS ,F1,FF,N,X, PA,NA,NNZ,C,PJ-O,ABAR,RT,CF)

40 RETURN

END

C -- - - - - - - -- - - - - - -

C

SUBOUTNEMULERS(GS ,ANGLE,RADIUS ,FF, PA,NA,NNZ,C,RHO,ABAR,RT,
C FRS

C
C - - - - - - - - - - - - - - -

C TI OTN STECMLXVLE OMO ULR

C MTHOUSIE TIND ROOT C OFX THLED CHAR EQN. L

C MEHDUETOFNROTOFTECA.EN
INEERC
INTEGER NAGS)NZC
COMPLER CIHS,DLF,CFRSFTRRDF MD

COMPLEX DELF,,DPLMP,1JMG,FRQRE,RTDAMA

REAL RADIUS,PI2,ANGLE,TOL1,TOL3,FF,RHO,ABAR,PA(GS)

PARAHETER(CI-(0.0,1.0),TOL3-1.OE-9,TOL1-1.OE-16)1 ".

P12m4*ACOS(0.0)
KCOUNT--l
KOUNT-0
KCOUNT-KCOUNT+I
IF(KCOUNT.EQ.7) COTO 40
MIAXIT-2 5
Z-RADIUS*CEXP(CCI*ANCLE)
H-. OOOO1EO*10 . E**KC0UNT
RT-Z+H
CALL FN(GS,PA,NA,NNZ,C,RHO,ABAR,FF,ANGLE,RADIUS, 2,RT,CFRTS)
DELFPR-CFRTS
RT-Z-H
CALL FN(GS,PA,NA,NNZ,C,RHO,ABAR,FF,ANGLE,RADIUS ,2,RT,CFRTS)
FRTPRV-CFRTSS
RT-Z
CALL FN(GS,PA,NA,NNZ,C,RHOI,ABAR,FF,ANqGLE,RADIUS ,2 ,RT,CFRTS)
FRTDEF-CFRTS
DELFPR-FRTPRV -DELFPR
LAMBDA--0.5E0

10 DELF-FRTDEF- FRTPRV0
DFPRU(-DELFPR*LAMBDA
NUM--FRTDEF*(1 . +LAMBDA)*2 .0
G- (1 .0+LAMBDA*2.0) *DELF- LAMBDA*DFPRU4
SQR-C*G+2 .0*NUM*LAMBDA*(DELF-DFPRLM)

IF((REAL(SQR).LT.0.0).AND.(ANGLE.GT.(PI2/2.EO-0.OO1EO)))
6 SQR-(0.O,0.O)
SQR=CSQRT (SQR)
DEN-G+SQR
IF(ANGLE.GT. (PI2/2.0-0.OO1EO))THEN
IF((REAL(G)*REAL(SQR)).LT.0.0)DEN-G-SQR
GOTO 20
ENDIF
IF(REAL(G)*REAL(SQR)+AIMAG(G)*AIMAG(SQR) .LT.0.0)DEN-G-SQR

20 IF(CABS(DEN) .LT.TOL3)DEN-l.EO
LAMBDA-NUM/DEN
FRTPRV-FRTDEF
DELFPR-DELF
H-H*LAMBDA
RT-RT+H
IF(KOUNT.GT.MAXIT) GOTO 40

30 KOUNT-KOUNT+l
IF(CABS(RT) .CT.1.2E0) THEN

ANCLE-ACOS (REAL(RT)/CABS(RT))
RT-. 99999999*CEXP(CI*ANGLE)

ENDIFN
CALL FN(GSPA,NA,-JNZ,C,RHiO,ABAR,FF,hNGLE,RADIUS ,2 ,RT, CFRTS)
FRTDEF-CFRTS
IF(CABS(H) .LT.TOL1*CABS(RT)) GOTO 40
IF(CABS(CFRTS).LT.TOL1) COTO 40
IF(CABS(FRTDEF) .LT.10.0*CABS(FRTPRV)) GOTO 10
H-H/2 .0
LAMBDA-LAMBDA/2 .0
RT-RT- H
GOTO 30

g
N,

rjj x Y ouinwi- wvvv rtmW n

40 RADIUS-CABS (RT)
ANGLE-ACOS (REAL(RT)/RADIUS)
RETURN
ENDS

C
C
C - - - - - - - - - - - - - - - - - -

SUBROUTINE MULLER(GS,ANGLE,RADIUS ,F1,FF,N,X,PA,NA,NNZ,C,RHO,ABAR,
6 RT,CF)

C
C - - - - - - - - - - - - - - - - - -

C
C THIS ROUTINE IS THE REAL-VALUED FORM OF
C MULLERS METHOD
C

INTEGER GS
REAL FRTPRV, DELFPR, FRTDEF,DELF, DFPRLM,G, SQR,H ,DEN
REAL LAM4BDA,NUM,F1,RHO,ABAR,PA(CS) ,RADIUS,ANGLE,FF,X
INTEGER KOUNT,MAXIT,N,NA(GS),NNZ,C
COMPLEX RT,CF

CKOUNT-O

MAXIT-25
H-X*O. 5E0
FRTPRV-Fl
DELFPR-F1-FF
CALL FN(GS,PA,NA,NNZ,C,RHO,ABAR,FF,ANGLE,RADIU3S,N,RT,CF)
FRTDEF-FF
LAMBDA--0.5E0

10 DELF-FRTDEF- FRTPRV
DFPRLM-DELFPR*LAMBDA
NUM--FRTDEF*(1 . +LAMBDA)*2 .0
G-(. O+LAMBDA*2 .)*DELF-LAMBDA*DFPRLM
SQR-G*G+2 . *NUM*LAMBDA* (DELF -DFPRLM)
IF(SQR. LT.O.O)THEN
LAMBDA-G/(2 .O*LAMBDA*(DFPRLM4-DELF))

ELSE
SQR-SQRT(CSQR)
DEN-G+SQR
IF(G*SQR. LT.0.O)DEN-G-SQR
IF(ABS(DEN).LT.l.E-7) DEN-1.0
LAMBDA-NUM/DEN

ENDIF
FRTPRV-FRTDEF
DELFPR-DELF
H-H*LAMBDA
RADIUS-RADIUS+H
IF(KOUNT.GT.MAXIT) GOTO 30

020 KOUNT-KOUNT+i.

CALL FN(CS ,PA,NA,NNZ,C,RHO,ABAR,FF,ANGLE,RADIUS ,N,RT,CF)
FRTDEF-FF

C CHECK FOR CONVERGENCE..
IF(ABS(H).LT.l.E-14) GOTO 30
IF(ABS(FRTDEF).LT.l.E-16) GOTO 30

1 110 1 11 1;

F.X ~ -K7Arpw% P-.v -77 -I .. 1-t - 4

C CHECK FOR DIVERGENCE
IF(ABS(FRTDEF) .LT.10.0*ABS(FRTPRV)) GOTO 10
H-H/2.O
LAMBDA-LAMBDA/2 .0
RADIUS-RADIUS -H
GOTO 20

C
30 RETURN

END
C
C

C

C

SU R UT N ---------- N--C------R-F----E--D---N-T-CF

C
INTEGER GS
INTEGER NA(GS).,NNZ,I,C,N
REAL SUM,PA(GS),F,RADIUS,ABAR,ANGLE,RHO,RN,TOL,PI2
COMPLEX CSUM,RT,CF

C
TOL-1 .E-14
P12-4*ACOS(0 .0)
IF(ABS (RADIUS) .LT.1.OE-4) RADIUS-1.OE-4
SUM-0.0
CSUM-(O.0,0.0)
COTO (100,200,300,400) N

C
C real version of char. equation
C
100 DO 110 I-1,NNZ

SUM-SUM+PA(I)*(RADIUS**NA(I))
110 CONTINUE

F-RADIUS**C-EXP((C*RH-O/ABAR)*(SU-1 .0))
CF-F
COTO 500

C complex version of char. equation
C
200 IF(CABS(RT).GT.1.01) THEN

F-.1E0
GOTO 500

ENDIF
DO 210 I-1,NNZ

CSUM-CSUM+PA(I)*(RT**NA(I))
210 CONTINUE

CF-RT**C-CEXP((C*RHO/ABAR)*(CSUM- 1.0))
F-CABS (CF) ,

GOTO 500
C
C modified char, equation
C
300 DO 310 I-1,NNZ

SUM-SUM+PA(I)*(RADIUS**NA(I))*COS(NA(I)*ANGLE)
310 CONTINUE

01

F-(C*RHO/ABAR)*(SUM.1.0) -C*LOG(RADIUS)
GOTO 500

C
C rr& value
C
400 DO 410 I-l,NNZ

SUM-SUM+PA(I)*(RADIUS**NA(I))*SIN(NA(I)*ANCLE)
410 CONTINUE

RN-((C*RHO/ABAR)*SUM- C*ANGLE) /PI2
I-RN+TOL
RN-RN- I
F-ABS (RN)

C
500 RETURN

END

4

pp.'

PROGRAM INPUT
C

C
C .

INTEGER PS,RS,GS
PARAMETER(PS-3000 ,RS-51O ,GS-31)
INTEGER C,C2,INNZ,NA(GS),MAXIT,SIZE,U
REAL RHO,RRHO,Al,A2,A3,SUM3,SUM4,L1 ,L2 ,L3 ,V1 ,V2 ,V3
REAL PA(GS),P(O:PS),ABAR,SUM1,SUM2
REAL RADIUS ,ANGLE, RN, F, DIFM, SUM
COMPLEX RT(RS),R,CF

C
WRITE(*,*) ' WELCOME TO THE QUEUEING SYSTEM MXDC'
WRITE(*,*)
WJRITE(*,*)
WRITE(*,*) 'PLEASE ENTER THE 0 OF DIFFERENT GROUP SIZES'
READ(*,*) NNZ
WJRITE(*, *)
WJRITE(*,*)' ENTER THE GROUP SIZE DISTRIBUTION:'
ABAR-O .0
DO 100 I-1,NNZ

READ(*,*) NA(I),PA(I)
ABAR-NA(I)*PA(I) + ABAR

100 CONTINUE
WRITE(*, *)
WRITE(*,*) 'ABAR - ',ABAR
WRITE(* ,*)
WJRITE(*,*) 'ENTER RHO'
READ(*,*) RHO
WRITE(*,*)
WRITE(*,*) 'ENTER # OF SERVERS (C)'
READ(*,*) C
WJRITE(* ,*)
WJRITE(*,*) 'ENTER DIFM'
READ(*,*) DIFM

WRITE(*,*) ' ENTER THE MAX # OF ITERATIONS (MAKXIT)'
READ(*,*) MAXIT

R IT TE(*)
WJRITE(*,*) 'CALCULATING'

C
U-6

C
C
C

CALL MXDC(NNZ,NA, PA,ABAR,C,RHO,MAXIT, DIFM,RT,P, SIZE)
C

C

WRITE(U,*) 'THE ROOTS ARE:'
WRITE(U, *)
WRITE(U, *)
DO 800 1-1.,C

R-RTMCI

RADIUS-CABS (R) N'

ANGLE-ACOS (REAL(R) /RADIUS)
CALL FN(GS,PA,NA,NNZCRHO,ABAR.RN,ANGLE,RADIUS,4,R,CF)

CALL FN(GS,PA,NA,NNZ,C.RHOABAR,F,ANGLE,RADIUS ,2,R,CF)
WRITE(U,*) I,' ROOT - ',RT(I)
WRITE(U,*) ' RN - ',RN
WRITE(U,*) ' FN -,
WRITE(U,*)

800 CONTINUE

C

RRHO-1 -RHO

C2-C*C
A1-0.0
A2-0.0
A3-0.0
DO 1000 I-1,NNZ

A1-NA(I)*PACI)+Al
IF(NA(I).GT.1) THEN

A2-NA(I)*(NA(I)-1)*PA(I) + A2
IF(NA(I).GT.2) THEN

ENDIF *N()-)(A()2*P()A
ENDIF

1000 CONTINUE
C

SUM1-0.0
SUM2-0.0
SUM3-P(O)*C2
SUM4-P(0)*C2*C

C
DO 1100 I-1,C

IF(I.NE.1) THEN
SUM1-REAL(1/(1-RT(I))) + SUMi
SUM2-REAL(RT(I)/((1-RT(I))*(l-RTCI))))+SUM2

ENDIF
IF(I.NE.C) THEN

SUM3-(C2-I*I)*P(I) + SUM3
ENDIF
SUM4-(C2*C-I*I*I)*P(I)4SUM4

1100 CONTINUE
C

Ll-SUM1+I/(2*RRHO)*(RHO*A2/A+l. C*RRHO*RRHO)
V1-4*RHO*A3*RRHO/A1 + 3*RH~O*A2/Al*pdO*A2/Al
Vl-V1+6*RHO*A2/Al* (C*RHO*Rl4 - 2*C*RHO+C -RHO+2) +1+2*R-i
Vl- (V l+6*C*RHiO*RRHO*RRHO -C2*RRHO*RRHO*RRHO*RRHO)
Vl-Vl/(12*RRHO*RRHO) - SUM2

C
L2-(C*RlO*(-sA2/Al) - C2*RRHiO*RRHO +SUM3)/(2*C*RRHO)
V2--3*L2*(C2*RRH0*RR0+C*(1.2*RHO) -C*RHO*A2/A1)
V2-V2+3*C*RHO*A2/Al*(.C*RHO+C+1) +- C*RHO*A3/A1
V2-V2+C2*C*RHO*RHO*RH0+3*C*C*RH0*RRH0*(C+i) -C*(C*C-RHO)+SUM4
V2-V2/(3*C*RELHQ) +L2-L2*L2
03-0.0
V3-0.0

J6

DO 1200 I-O,SIZE-1 -

L3-I*P(I)+L3
V3-I*I*P(I)+V3

I V-
1200 CONTINUE

V3-V3 -L3*L3
C

CWRITE(U,*) 'CHECK ON OUTPUT'

WRITE(U,*)
IJRITE(U,*) 'USING ROOTS:'

WRITE(U,*) 'MEAN- ',L2
WRITE(U,*) 'VARIANCE- ',V2
WRITE(U,*)
WRITE(U,*) ' USING ATHE RTPROBS
tJRITE(U,*) ' MEAN- ',L2
WRITE(U,*) ' VARIANCE- ',V2

WRITE(U,*) Ie
WRITE(U,*) 'SIE AL THSIE PO1 :
WRITE(U,*) 'MA-'L
WRITE(U,*) ' THVPOBBIIIAES ARE:'
WRITE(U, *)L

!x WRSUM-O. * 'OSIZE- ,SI-1PI

WRITE(U, *)
WRITE(U,*) ' THE SUMOFAILTE PS ARE',U

1401 COE(NUE

END

0U
0 ~

-%
r.-

.%
DISTRIBUTION LIST .

Copy No.

Office of Naval Research
800 North Quincy Street

Arlington, VA 2221.7

Attention: Scientific Officer,
Statistics and Probability

Mathematical Sciences Division I. -

2 ONR Resident Representative
Joseph Henry Building, Room 623
2100 Pennsylvania Avenue, N.W.
Washington, DC 20037

3 - 8 Director, Naval Research Laboratory
Washington, DC 20375

Attention: Code 2627

9 - 20 Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

21 - 29 C. M. Harris

30 GMU Office of Research

%-'-

I •~NS

